An amino acid substitution in biobreeding rat corticosteroid binding globulin results in reduced steroid binding affinity.
نویسندگان
چکیده
BioBreeding (BB) rats are derived from an outbred colony of Wistar rats and are used as a model of autoimmune diabetes mellitus. A corticosteroid binding globulin (CBG) variant with reduced affinity for glucocorticoids has now been found in the blood of these animals. The dissociation rate constants of BB CBG for cortisol (4.42 nM) and corticosterone (1.43 nM) are both about 50% higher than those associated with Wistar CBG, but no obvious difference in the steroid binding specificity of BB and Wistar CBGs was detected. Purified BB and Wistar CBGs exhibit the same size heterogeneity when examined by polyacrylamide gel electrophoresis under denaturing conditions, and the sizes of their respective hepatic mRNAs are identical. The genetic basis for this abnormality was therefore determined by comparing the cDNA sequences for BB and Wistar CBG, and this revealed a point mutation that results in a single amino acid substitution at residue 276 (Ile in BB CBG and Met in Wistar CBG). To confirm that this mutation is responsible for the reduced steroid binding affinity associated with BB CBG, the cDNAs for rat CBG-Ile276 and CBG-Met276 were expressed in Chinese hamster ovary cells. The steroid binding affinities of the CBGs secreted by these cells were essentially identical with those observed in the corresponding serum samples from these two rat strains. The amino acid substitution identified in BB rat CBG therefore clearly accounts for the reduction in its steroid binding affinity, and further analysis of this and other natural CBG variants may reveal important information about the CBG steroid binding site. It is also possible that this mutation may contribute to the etiology of pathological abnormalities that are characteristic of the BB rat.
منابع مشابه
Residues in the human corticosteroid-binding globulin reactive center loop that influence steroid binding before and after elastase cleavage.
Corticosteroid-binding globulin (CBG) is a non-inhibitory serine proteinase inhibitor (serpin) that transports cortisol and progesterone in blood. Crystal structures of rat CBG and a thrombin-cleaved human CBG:anti-trypsin (Pittsburgh) chimera show how structural transitions after proteolytic cleavage of the CBG reactive center loop (RCL) could disrupt steroid binding. This ligand release mecha...
متن کاملIdentification of Aptamer-Binding Sites in Hepatitis C Virus Envelope Glycoprotein E2
Hepatitis C Virus (HCV) encodes two envelope glycoproteins, E1 and E2. Our previous work selected a specific aptamer ZE2, which could bind to E2 with high affinity, with a great potential for developing new molecular probes as an early diagnostic reagents or therapeutic drugs targeting HCV. In this study, the binding sites between E2 and aptamer ZE2 were further explored. E2 was truncated to 15...
متن کاملFunctional implications of corticosteroid-binding globulin N-glycosylation
Corticosteroid-binding globulin (CBG) is a plasma carrier of glucocorticoids. Human and rat CBGs have six N-glycosylation sites. Glycosylation of human CBG influences its steroid-binding activity, and there are N-glycosylation sites in the reactive center loops (RCLs) of human and rat CBGs. Proteolysis of the RCL of human CBG causes a structural change that disrupts steroid binding. We now show...
متن کاملFunctional implication of an Arg307Gly substitution in corticosteroid-binding globulin, a candidate gene for a quantitative trait locus associated with cortisol variability and obesity in pig.
We previously reported that corticosteroid-binding globulin gene (Cbg) may be the causal gene of a quantitative trait locus associated with cortisol levels, fat deposition, and muscle content in a pig intercross. Sequence analysis of parental animals allowed us to identify four amino-acid substitutions. Here we have examined if any of these single amino acid substitutions could be responsible f...
متن کاملAndrogen-binding protein and reproduction: where do we stand?
Androgen-binding protein (ABP) is a testicular glycoprotein (French and Ritzén, 1973; Danzo et al, 1974; Danzo and Black, 1990) that binds androgens with high affinity (Westphal, 1986) and transports them to the epididymis (French and Ritzén, 1973). The first evidence of ABPs existence came from the early 1970s, when a protein with a steroid-binding activity similar to the androgen receptor was...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 266 28 شماره
صفحات -
تاریخ انتشار 1991